for a pair of inverse reflections under these conditions. His formulae are

$$
\begin{aligned}
& \mathrm{I}_{H}=(D / 2 k)^{2}\left|V_{H}\right|^{2}+(D / 2 k)^{3} \operatorname{Im}\left\{V_{H} \sum_{G}^{\prime} V_{-G} V_{G-H}\right\}-\ldots \\
& \mathrm{I}_{\bar{H}}=(D / 2 k)^{2}\left|V_{H}\right|^{2}-(D / 2 k)^{3} \operatorname{Im}\left\{V_{H} \sum_{G}^{\prime} V_{-G} V_{G-H}\right\}-\ldots
\end{aligned}
$$

where $H$ stands for $h, k, l, D=$ crystal thickness, $k=2 \pi / \lambda$, $\operatorname{Im}\}$ denotes the imaginary part of \{\} and the prime after the symbol $\Sigma$ indicates the absence of terms with $G=0$ or $H$. This difference arises because of the fact that though $\left|V_{H}\right|=\left|V_{\bar{H}}\right|$ the phases of $V_{H}$ and $V_{\bar{H}}$ are different. Consequently, if $V_{H}$ can be obtained from the structure, it should be possible to find the absolute configuration from the difference in intensity of inverse reflections using a thick crystal to accentuate the effect of dynamical interactions.

The author is grateful to Prof. G. N. Ramachandran for the keen interest he took in this work and for several helpful criticisms. He is also indebted to Dr K. S.

Chandrasekharan for the valuable discussions he had with him.

## References

Cowley, J. M. \& Rees, A. L. G. (1958). Rep. Phys. Soc. Progr. Phys. 21, 165.
Fuлimoto, F. (1959). J. Phys. Soc. Japan, 14, 1558.
Hoerni, J. A. (1956a). Phys. Rev. 102, 1530.
Hoerni, J. A. (1956b). Phys. Rev. 102, 1534.
Ibers, J. A. \& Hoerni, J. A. (1954). Acta Cryst. 7, 405.
Kohra, K. (1954). J. Phys. Soc. Japan, 9, 690.
Miyake, S. \& Uyeda, R. (1950). Acta Cryst. 3, 314.
Miyake, S. \& Kambe, K. (1954). Acta Cryst. 7, 220.
Niehrs, H. (1955). Z. Phys. 140, 106.
Okaya, Y. \& Pepinsky, R. (1956). Phys. Rev. 103, 1645.
Ramachandran, G. N. \& Raman, S. (1956). Curr. Sci. (India), 25, 348.
Raman, S. (1959). Proc. Ind. Acad. Sci. A 50, 95.
Schomaker, V. \& Glauber, R. (1952). Nature, Lond. 170, 290.

## Acta Cryst. (1961). 14, 691

The crystal structure of MoTe $\mathbf{2}^{*}$ * By D. Puotinen and R. E. Newnham, Laboratory for Molecular Science and Molecular Engineering, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.
(Received 1 December 1960)

An investigation of the Mo-Te system has been undertaken to determine the thermoelectric properties of its constituent phases. Our work confirms the existence of $\mathrm{MoTe}_{2}$ and $\mathrm{Mo}_{2} \mathrm{Te}_{3}$, the two phases previously reported by Morette (1942). This paper describes a refinement of the molybdenum ditelluride structure.
$\mathrm{MoTe}_{2}$ was prepared from the elements, using $99.999 \%$ pure Te and Mo, further purified by heat treatment in $\mathrm{H}_{2}$ at $850^{\circ} \mathrm{C}$., Stoichiometric quantities of the elements were sealed in vacuo in carbonized quartz ampules. The specimen was reacted and homogenized for several hours at $1100^{\circ} \mathrm{C}$. using $\mathrm{R}-\mathrm{F}$ induction heating. Chemical analysis of the resultant product, a loosely sintered polycrystalline specimen, yielded $\mathbf{3 3 . 4 4}$ at. \% Mo, 66.56\% Te. The specimen was crushed and the specific gravity of the powder measured as $7 \cdot 8 \pm 0 \cdot 2$. $\mathrm{MoTe}_{2}$ oxidizes slowly when exposed to air at room temperature; the powder pattern of finely divided $\mathrm{MoTe}_{2}$ begins to show molybdenum dioxide lines after about a week in air.

The crystal structure of $\mathrm{MoTe}_{2}$ was determined from its powder pattern, using a diffractometer and filtered $\mathrm{Cu} K \alpha$ radiation. The diffraction spectra were easily indexed by comparison with the $\mathrm{MoS}_{2}$ pattern and the lattice parameters were computed from several highangle lines, using graphic extrapolation to $\theta=90^{\circ} . \mathrm{MoTe}_{2}$ has a hexagonal unit cell, space group $P 6_{3} / m m c$, with $a=3.519 \pm 0.001, c=13.964 \pm 0.004 \AA$, and a calculated specific gravity of $7.78 \mathrm{~g} . \mathrm{cm} .^{-3}$. It is isomorphous with

[^0]molybdenite, with Mo at $\pm\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\right)$ and with Te at $\pm\left(\frac{1}{3}, \frac{2}{3}, z\right)$ and $\pm\left(\frac{2}{3}, \frac{1}{3}, z+\frac{1}{2}\right)$, where $z \simeq \frac{5}{8}$. The positional parameter of tellurium, $z$, was determined from the powder-pattern intensities. Preferred orientation of the $\mathrm{MoTe}_{2}$ powder parallel to the ( $00 \cdot 1$ ) cleavage face made accurate intensity determination difficult, but consistent results were obtained by sifting the powder ( $<44 \mu$ ) onto a glass slide covered with glue. A comparison of the observed intensities for specimens with preferred and random orientations is given in Table 1.

The random-orientation intensities were compared with calculated structure factors to obtain the tellurium coordinate. The calculated structure factors were computed from

$$
F_{c}(h k l)=2[p(h k l)]^{\frac{1}{2}} \sum_{i} f_{i} \cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right),
$$

where $p$ is the multiplicity factor and the summation was carried out over one formula unit. The observed intensities were scaled to the $F_{o}$ values to give an observed structure factor

$$
F_{0}(h k l)=K(\theta) P(\theta)\left[I_{0}(h k l)\right]^{\frac{1}{3}},
$$

where $P(\theta)$ is the Lorentz polarization correction and $K(\theta)$ a scaling factor which includes, among other things, the Mo and Te temperature factors. $K(\theta)$ was calculated by scaling the observed and calculated structure factors in zones. The structure factors were computed for various values of $z$; the best agreement between theory and experiment was obtained for $z=0 \cdot 620$, as shown in Fig. 1 . The lowest $R$ factor is still quite large ( $17 \%$ ), but much of the discrepancy can be attributed to preferred orientation or to anisotropic temperature factors, since the

Table 1. The powder pattern of $\mathrm{MoTe}_{2}$

| $h k \cdot l$ | $d_{c}$ | $d_{0}$ | Inte (preferred) | sity (random) | $F_{o}$ | $F_{c}$ | $h k \cdot l$ | $d_{c}$ | $d_{0}$ | Inten (preferred) | sity (random) | $F_{o}$ | $F_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00 \cdot 2$ | 6.98 | 6.99 | 80 | 15 | 79 | -93 | 20.10 | $1 \cdot 0295$ | - | $<\frac{1}{2}$ | $<\frac{1}{2}$ | <99 | 14 |
| $00 \cdot 4$ | 3.491 | $3 \cdot 493$ | 100 | 14 | 150 | $-153$ | $30 \cdot 0$ | 1.0158 | $1 \cdot 0160$ | $\frac{1}{2}$ | 3 | 328 | 368 |
| $10 \cdot 0$ | 3.047 | $3 \cdot 048$ | 9 | 36 | 291 | -300 | $10 \cdot 13$ | 1.0131 | $1 \cdot 0132$ | 5 | 4 | 407 | -246 |
| $10 \cdot 1$ | 2.977 | 2.983 | 3 | 10 | 155 | 150 | $30 \cdot 2$ | 1.0052 | $1 \cdot 0054$ | $<\frac{1}{2}$ | $\frac{1}{2}$ | 102 | 167 |
| $10 \cdot 2$ | 2.793 | $2 \cdot 797$ | 2 | 4 | 105 | 99 | 21.7 | 0.9975 | 0.9977 | 2 | 2 | 283 | $-210$ |
| $10 \cdot 3$ | $2 \cdot 550$ | $2 \cdot 550$ | 51 | 100 | 596 | 585 | 00.14 | 0.9925 | - | $<\frac{1}{2}$ | $<\frac{1}{2}$ | $<144$ | 124 |
| $00 \cdot 6$ | $2 \cdot 327$ | $2 \cdot 324$ | 34 | 6 | 170 | -133 | $30 \cdot 4$ | 0.9754 | 0.9755 | 4 | 6 | 504 | $\{-209$ |
| $10 \cdot 4$ | $2 \cdot 296$ | $2 \cdot 295$ | 4 | 6 | 170 | 167 | 20.11 | 0.9753 \} | 0.9755 | 4 | 6 | 504 | $\{-422$ |
| $10 \cdot 5$ | 2.059 | $2 \cdot 060$ | 35 | 35 | 458 | -459 | 11.12 | 0.9706 | 0.9705 | 1 | 1 | 249 | -201 |
| $10 \cdot 6$ | 1.850 | 1.850 | 3 | 4 | 172 | 147 | 21.8 | 0.9614 | 0.9616 | 1 | 2 | 340 | -351 |
| $11 \cdot 0$ | 1.760 | 1.762 | 4 | 25 | 475 | 492 | $10 \cdot 14$ | 0.9480 | 0.9477 | 1 | 1 | 220 | 147 |
| $00 \cdot 8$ | 1.746 | 1.746 | 84 | 15 | 382 | 277 | $30 \cdot 6$ | 0.9310 | 0.9308 | $\frac{1}{2}$ | 1 | 201 | 71 |
| $11 \cdot 2$ | 1.706 | $1 \cdot 709$ | 1 | 3 | 173 | -161 | 21.9 | 0.9248 \} | 0.9249 | 1 | 1 | 105 | $\{42$ |
| $10 \cdot 7$ | 1.669 | 1.669 | 4 | 4 | 212 | -195 | $20 \cdot 12$ | 0.9248 \} | 0.9249 | $\stackrel{1}{2}$ | $\frac{1}{2}$ | 105 | $\{96$ |
| $11 \cdot 4$ | 1.571 | 1.573 | 2 | 6 | 280 | -283 | $10 \cdot 15$ | 0.8903 | $0 \cdot 8904$ | 2 | 1 | 254 | -170 |
| $20 \cdot 0$ | 1.524 | 1.525 | 1 | 3 | 212 | -229 | 21-10 | 0.8885 | - | $<\frac{1}{2}$ | $<\frac{1}{2}$ | $<136$ | 20 |
| $20 \cdot 1$ | 1.515 | 1.515 | 12 | 9 | 359 | $\{-119$ | $22 \cdot 0$ | 0.8797 | 0.8799 | $\frac{1}{2}$ | 1 | 252 | 336 |
| $10 \cdot 8$ | $1.515\}$ | 1.515 | 12 | 9 | 359 | $\{-317$ | $30 \cdot 8$ | 0.8780 | 0.8781 | 4 | 7 | 583 | \{ 467 |
| $20 \cdot 2$ | 1.489 | 1.488 | $<1$ | 1 | 105 | 82 | $20 \cdot 13$ | 0.8779 \} | 0.8781 | 4 | 7 | 583 | $\{224$ |
| $20 \cdot 3$ | 1.448 | 1.449 | 5 | 11 | 413 | -458 | $22 \cdot 2$ | 0.8728 \} | 0.8728 | 5 | 3 | 387 | $\{-111$ |
| $11 \cdot 6$ | 1.404 | 1.403 | 2 | 3 | 243 | -258 | $00 \cdot 16$ | 0.8727 \} | $0 \cdot 8728$ | $\checkmark$ | 3 | 387 | $\{177$ |
| $20 \cdot 4$ | $1 \cdot 397$ ) | 1-397 | 1 | 1 | 156 | $\{136$ | $11 \cdot 14$ | 0.8677 | 0.8677 | 3 | 3 | 362 | -277 |
| $00 \cdot 10$ | 1.396 ) | 1.397 | 1 | 1 | 156 $<86$ | $\left\{\begin{array}{r}13 \\ -14\end{array}\right.$ | 22.4 | 0.8530 | 0.8530 | 4 | 8 | 605 | $\left\{\begin{array}{r}-206 \\ 537\end{array}\right.$ |
| $10 \cdot 9$ | $1 \cdot 383$ | 1-382 | 1 | $<1$ | $<86$ | 37 | 21.11 | 0.8530 \} | 0.8530 | 4 | 8 | 605 | \{ 537 |
| $20 \cdot 5$ | 1.338 | $1 \cdot 340$ | 2 | 6 | 348 | 368 | $31 \cdot 0$ | 0.8452 | 0.8452 | $\frac{1}{2}$ | 1 | 201 | -234 |
| $20 \cdot 6$ | 1-275 | 1.274 | 1 | 1 | 139 | \{ 124 | $31 \cdot 1$ | $0 \cdot 8437$ | 0.8438 | 1 | $\frac{1}{2}$ | 150 | -125 |
| $10 \cdot 10$ | $1 \cdot 269$ ) | 1.274 | 1 | 1 | 139 | $\left\{\begin{array}{r}17\end{array}\right.$ | $31 \cdot 2$ | 0.8391 | $0 \cdot 8390$ | 4 | 2 | 325 | $\{76$ |
| 11.8 | 1.239 | 1.240 | 9 | 13 | 574 | 571 | $10 \cdot 16$ | 0.8390 \} | 0.8390 | 4 | 2 | 325 | $\{-209$ |
| $20 \cdot 7$ | 1.211 | 1.211 | 1 | 1 | 161 | 164 | $20 \cdot 14$ | 0.8345 | 0.8344 | $\frac{1}{2}$ | $\frac{1}{2}$ | 184 | 136 |
| $10 \cdot 11$ | $1 \cdot 172$ | $1 \cdot 173$ | 17 | 11 | 568 | 456 | 31-3 | 0.8316 | 0.8318 | 2 | 4 | 424 | $-472$ |
| $00 \cdot 12$ | $1 \cdot 164$ | $1 \cdot 165$ | 2 | 1 | 158 | $-90$ | $22 \cdot 6$ | 0.8229 | 0.8226 | $\frac{1}{2}$ | 1 | 190 | -189 |
| $21 \cdot 0$ | $1 \cdot 152$ | $1 \cdot 153$ | $<\frac{1}{2}$ | 2 | 249 | $-280$ | $31 \cdot 4$ | 0.8215 ) |  |  |  |  | \{ 141 |
| $21 \cdot 1$ | 1-148 | 1-149 | 2 | 3 | 322 | \{ 147 | $30 \cdot 10$ | $0.8215\}$ | 0.8215 | $<$ | $\frac{1}{2}$ | 150 | $\{229$ |
| $20 \cdot 8$ | $1 \cdot 148$ \} | $1 \cdot 149$ | 2 | 3 | 322 | $\{-274$ | 21.12 | $0 \cdot 8186$ | 0.8185 | $\frac{1}{2}$ | $\frac{1}{2}$ | 127 | 127 |
| 21.2 | 1.137 | - | $<\frac{1}{2}$ | $<\frac{1}{2}$ | $<127$ | 93 | 31.5 | $0 \cdot 8090$ | 0.8091 | 1 | 3 | 362 | 390 |
| $21 \cdot 3$ | $1 \cdot 118$ | $1 \cdot 119$ | 3 | 8 | 506 | 560 | $3 \mathrm{I} \cdot 6$ | 0.7945 \} | 0.7945 | 1 | 1 | 224 | $\left\{\begin{array}{l}133 \\ 150\end{array}\right.$ |
| $21 \cdot 4$ | $1 \cdot 0938$ ) | $1 \cdot 0949$ | $\frac{1}{2}$ | 1 | 190 | $\{170$ | 20.15 | 0.7944 \} | 0.7945 | 1 | 1 | 224 | $\{150$ |
| $11 \cdot 10$ | 1.0938 ( | 1.0949 | $\frac{1}{2}$ | 1 | 190 | $\{-31$ | $10 \cdot 17$ | 0.7931 | 0.7930 | $\frac{1}{2}$ | $\frac{1}{2}$ | 96 | -40 |
| $20 \cdot 9$ | 1.0871 | $1 \cdot 0870$ | 1 | 1 | 187 | $\{-32$ | 22.8 | $0.7856$ | $0 \cdot 7856$ | 4 | 8 | 515 | $\{433$ |
| $10 \cdot 12$ | 1.0871 $\}$ | 1.0870 | 1 | 1 | 187 | \{ 105 | 21.13 | 0.7856 |  | 4 | 8 | 515 | $\{-297$ |
| 21.5 | 1.0648 | 1.0649 | 2 | 5 | 436 | -461 | 11.16 | 0.7818 | 0.7819 | 10 | 9 | 498 | 402 |
| $21 \cdot 6$ | $1 \cdot 0323$ | 1.0320 | $\frac{1}{2}$ | $\frac{1}{2}$ | 150 | 153 | $31 \cdot 7$ | $0 \cdot 7782$ | $0 \cdot 7783$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 110 | 178 |



Fig. 1. Agreement between $F_{c}$ and $F_{o}$ for several values of the tellurium coordinate $z . R=\sum_{h k l}\left(F_{o}-\left|F_{c}\right|\right) \mid \sum_{h k l} F_{o}$.
calculated intensities of spectra with large $l$ index are consistently low. The $F_{o}$ and $F_{c}$ values for $z=0.620$ are listed in Table 1.

In the $\mathrm{MoTe}_{2}$ structure, each Mo is coordinated to a trigonal prism of six telluriums; the $\mathrm{Mo}-\mathrm{Te}$ distance is $2.73 \AA$. Each Te is surrounded by ten other tellurium atoms: six in the close-packed ( $00 \cdot 1$ ) plane at $3.52 \AA$, one directly below it at $3.63 \AA$, and three above it at $3.92 \AA$ across the cleavage plane. The $\mathrm{Te}-\mathrm{Mo}-\mathrm{Te}$ bond angles are $83 \cdot 5^{\circ}(3), 80 \cdot 4^{\circ}(6)$, and $133.9^{\circ}(6)$, in good agreement with the $d^{4} s p$ hybrid bonds proposed by Hultgren (1932).

## References

Hultaren, R. (1932). Phys. Rev. 40, 891.
Morette, A. (1942). C. R. Acad. Sci. Paris, 215, 86.


[^0]:    * Supported in part by the U.S. Air Force under Contract No. AF-19(604)-4/53 and in part jointly by the U.S. Office of Naval Research, the U.S. Army Signal Corps, and the U.S. Air Force under ONR Contract Nonr-1841(10), NR-018801.

