for a pair of inverse reflections under these conditions. His formulae are

$$I_{H} = (D/2k)^{2} |V_{H}|^{2} + (D/2k)^{3} \operatorname{Im} \{V_{H} \sum_{G}' V_{-G} V_{G-H}\} - \dots$$

$$I_{\overline{H}} = (D/2k)^{2} |V_{H}|^{2} - (D/2k)^{3} \operatorname{Im} \{V_{H} \sum_{G}' V_{-G} V_{G-H}\} - \dots$$

where H stands for h, k, l, $D = \text{crystal thickness}, k = 2\pi/\lambda$, Im $\{ \}$ denotes the imaginary part of $\{ \}$ and the prime after the symbol Σ indicates the absence of terms with G=0 or H. This difference arises because of the fact that though $|V_H| = |V_{\overline{H}}|$ the phases of V_H and $V_{\overline{H}}$ are different. Consequently, if V_H can be obtained from the structure, it should be possible to find the absolute configuration from the difference in intensity of inverse reflections using a thick crystal to accentuate the effect of dynamical interactions.

The author is grateful to Prof. G. N. Ramachandran for the keen interest he took in this work and for several helpful criticisms. He is also indebted to Dr K. S. Chandrasekharan for the valuable discussions he had with him.

References

- COWLEY, J. M. & REES, A. L. G. (1958). Rep. Phys. Soc. Progr. Phys. 21, 165.
- FUJIMOTO, F. (1959). J. Phys. Soc. Japan, 14, 1558.
- HOERNI, J. A. (1956a). Phys. Rev. 102, 1530. HOERNI, J. A. (1956b). Phys. Rev. 102, 1534.
- IBERS, J. A. & HOERNI, J. A. (1954). Acta Cryst. 7, 405.
- KOHRA, K. (1954). J. Phys. Soc. Japan, 9, 690.
- MIYAKE, S. & UYEDA, R. (1950). Acta Cryst. 3, 314.
- MIYAKE, S. & KAMBE, K. (1954). Acta Cryst. 7, 220.
- NIEHRS, H. (1955). Z. Phys. 140, 106.
- OKAYA, Y. & PEPINSKY, R. (1956). Phys. Rev. 103, 1645.
- RAMACHANDRAN, G. N. & RAMAN, S. (1956). Curr. Sci. (India), 25, 348.
- RAMAN, S. (1959). Proc. Ind. Acad. Sci. A 50, 95.
- SCHOMAKER, V. & GLAUBER, R. (1952). Nature, Lond. 170, 290.

Acta Cryst. (1961). 14, 691

The crystal structure of MoTe2.* By D. PUOTINEN and R. E. NEWNHAM, Laboratory for Molecular Science and Molecular Engineering, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

(Received 1 December 1960)

An investigation of the Mo-Te system has been undertaken to determine the thermoelectric properties of its constituent phases. Our work confirms the existence of $MoTe_2$ and Mo_2Te_3 , the two phases previously reported by Morette (1942). This paper describes a refinement of the molybdenum ditelluride structure.

 $MoTe_2$ was prepared from the elements, using 99.999%pure Te and Mo, further purified by heat treatment in $\mathbf{\hat{H}}_2$ at 850 °C., Stoichiometric quantities of the elements were sealed in vacuo in carbonized quartz ampules. The specimen was reacted and homogenized for several hours at 1100 °C. using R-F induction heating. Chemical analysis of the resultant product, a loosely sintered polycrystalline specimen, yielded 33.44 at.% Mo, 66.56% Te. The specimen was crushed and the specific gravity of the powder measured as 7.8 ± 0.2 . MoTe, oxidizes slowly when exposed to air at room temperature; the powder pattern of finely divided MoTe₂ begins to show molybdenum dioxide lines after about a week in air.

The crystal structure of MoTe₂ was determined from its powder pattern, using a diffractometer and filtered Cu $K\alpha$ radiation. The diffraction spectra were easily indexed by comparison with the MoS₂ pattern and the lattice parameters were computed from several highangle lines, using graphic extrapolation to $\theta = 90^{\circ}$. MoTe, has a hexagonal unit cell, space group $P6_3/mmc$, with $a = 3.519 \pm 0.001$, $c = 13.964 \pm 0.004$ Å, and a calculated specific gravity of 7.78 g.cm.⁻³. It is isomorphous with

molybdenite, with Mo at $\pm(\frac{1}{3},\frac{2}{3},\frac{1}{4})$ and with Te at $\pm (\frac{1}{3}, \frac{2}{3}, z)$ and $\pm (\frac{2}{3}, \frac{1}{3}, z + \frac{1}{2})$, where $z \simeq \frac{5}{8}$. The positional parameter of tellurium, z, was determined from the powder-pattern intensities. Preferred orientation of the $MoTe_2$ powder parallel to the (00.1) cleavage face made accurate intensity determination difficult, but consistent results were obtained by sifting the powder ($<44\mu$) onto a glass slide covered with glue. A comparison of the observed intensities for specimens with preferred and random orientations is given in Table 1.

The random-orientation intensities were compared with calculated structure factors to obtain the tellurium coordinate. The calculated structure factors were computed from

$$F_c(hkl) = 2[p(hkl)]^{\frac{1}{2}} \sum_i f_i \cos 2\pi (hx_i + ky_i + lz_i)$$
,

where p is the multiplicity factor and the summation was carried out over one formula unit. The observed intensities were scaled to the F_o values to give an observed structure factor

$$F_o(hkl) = K(\theta)P(\theta)[I_0(hkl)]^{\frac{1}{2}},$$

where $P(\theta)$ is the Lorentz polarization correction and $K(\theta)$ a scaling factor which includes, among other things, the Mo and Te temperature factors. $K(\theta)$ was calculated by scaling the observed and calculated structure factors in zones. The structure factors were computed for various values of z; the best agreement between theory and experiment was obtained for z = 0.620, as shown in Fig. 1. The lowest R factor is still quite large (17%), but much of the discrepancy can be attributed to preferred orientation or to anisotropic temperature factors, since the

^{*} Supported in part by the U.S. Air Force under Contract No. AF-19(604)-4/53 and in part jointly by the U.S. Office of Naval Research, the U.S. Army Signal Corps, and the U.S. Air Force under ONR Contract Nonr-1841(10), NR-018-801.

SHORT COMMUNICATIONS

Table 1. The powder pattern of MoTe,

	Intensity						Intensity						
$hk \cdot l$	d_c	d_o	(preferred)	(random)	F_{o}	F_{c}	$hk \cdot l$	d_c	d_o	(preferred)	(råndom)	F_{o}	F_c
00.2	6.98	6.99	80	15	79	-93	20.10	1.0295		$<\frac{1}{2}$	$<\frac{1}{2}$	< 99	14
00.4	3.491	3.493	100	14	150	153	30.0	1.0158	1.0160	ł	3	328	368
10.0	3.047	3.048	9	36	291	-300	10.13	1.0131	1.0132	5	4	407	-246
10.1	2.977	2.983	3	10	155	150	30.2	1.0052	1.0054	$<\frac{1}{2}$	ł	102	167
10.2	2.793	2.797	2	4	105	99	21.7	0.9975	0.9977	2	2	283	-210
10.3	2.550	2.550	51	100	596	585	00.14	0.9925		$<\frac{1}{2}$	$<\frac{1}{2}$	<144	124
00.6	2.327	2.324	34	6	170	133	30.4	0·9754)	0.0755	4	6	504	$\int -209$
10.4	2.296	2.295	4	6	170	167	20.11	0∙9753 ∫	0.9799	4	0	004	(-422)
10.5	2.059	2.060	35	35	458	-459	11.12	0.9706	0.9705	1	1	249	-201
10.6	1.850	1.850	3	4	172	147	21.8	0.9614	0.9616	1	2	340	-351
11.0	1.760	1.762	4	25	475	492	10.14	0.9480	0.9477	1	1	220	147
00.8	1.746	1.746	84	15	382	277	30.6	0.9310	0.9308	1/2	1	201	71
11.2	1.706	1.709	1	3	173	-161	21.9	0∙9248 ∖	0.0940	1	1	105	∫ 42
10.7	1.669	1.669	4	4	212	-195	20.12	0∙9248∫	0.9249	2	2	105) 96
11.4	1.571	1.573	2	6	280	-283	10.15	0.8903	0.8904	2	1	254	-170
20.0	1.524	1.525	1	3	212	-229	21.10	0.8885		$<\frac{1}{2}$	$<\frac{1}{2}$	< 136	20
20.1	1.515	1.515	12	9	359	∫ — 119	$22 \cdot 0$	0.8797	0.8799	1/2	1	252	336
10.8	1.515			Ū	000	(-317)	30.8	0∙8780 ∖	0.8781	4	7	583	∫ 467
20.2	1.489	1.488	< 1	1	105	82	20.13	0·8779 j	0 0101	1	•	000	224
20.3	1.448	1.449	5	11	413	-458	$22 \cdot 2$	0.8728	0.8728	5	3	387	∫-111
11.6	1.404	1.403	2	3	243	-258	00.16	0·8727 j	0 0120	Ū	0	001	177
20.4	1.397	1.397	1	1	156	$\int 136$	11.14	0.8677	0.8677	3	3.	362	-277
00.10	1.396 J	1 000	_			(-14)	22.4	0.8530	0.8530	4	8	605	$\int -206$
10.9	1.383	1.382	1	<1	< 86	37	21.11	0·8530 J		-	-		(537
20.5	1.338	1.340	2	6	348	368	31.0	0.8452	0.8452	12	1	201	-234
20.0	1.275	1.274	1	1	139	124	31.1	0.8437	0.8438	4	2	150	- 125
10.10	1.209 J	1.040	0	10	~ = 4	(17	31.2	0.8391	0.8390	4	2	325	1 76
11.0	1.239	1.240	9	13	574	571	10.10	0.8390 J	0.0044			104	(-209)
20.11	1.179	1.179	1	1	101	104	20.14	0.8345	0.8344	2	ż	184	130
10.11	1.164	1.165	17	11	208	400	31.3	0.8316	0.8318	2	4	424	-472
91.0	1.159	1.159	2 1	1	158	- 90	22.0	0.8229	0.8226	ź	1	190	- 189
21.0	1.148)	1.152	< 2	2	249	-280	31.4	0.8215	0.8215	< }	ł	150	
21.1	1.148	1.149	2	3	322	141	01.10	0.8215 j	0.0105	- ,	-	107	(229
20.8	1.137	_	~ 1	~ 1	- 197	(-274)	21.12	0.8000	0.8001	2	2	127	200
21.3	1.118	1.119	~ 2	~ 2	506	560	31.6	0.7045)	0.9091	1	J	302	(122
21.4	1.0938)	1 110	0	0	500	(170	20.15	0.7944	0.7945	1	1	224	1 150
11.10	1.0938	1.0949	ź	1	190	$\frac{110}{1-31}$	10.17	0.7931	0.7930	1	1	96	
20.9	1.0871		_	_		-32	22.8	0.7856	0 1000	2	2	30	(433
10.12	1.0871	1.0870	1	1	187	105	21.13	0.7856	0.7856	4	8	515	1 - 297
21.5	1.0648	1.0649	2	5	436	-461	11.16	0.7818	0.7819	10	9	498	402
21.6	1.0323	1.0320	1 _	Å	150	153	31.7	0.7782	0.7783	1	1	110	178
			z	2		200	.		5 50	2	2		110

calculated intensities of spectra with large l index are consistently low. The F_o and F_c values for z = 0.620 are listed in Table 1.

In the MoTe₂ structure, each Mo is coordinated to a trigonal prism of six telluriums; the Mo-Te distance is 2.73 Å. Each Te is surrounded by ten other tellurium atoms: six in the close-packed (00·1) plane at 3.52 Å, one directly below it at 3.63 Å, and three above it at 3.92 Å across the cleavage plane. The Te-Mo-Te bond angles are 83.5° (3), 80.4° (6), and 133.9° (6), in good agreement with the d^4sp hybrid bonds proposed by Hultgren (1932).

References

HULTGREN, R. (1932). *Phys. Rev.* 40, 891. MORETTE, A. (1942). *C. R. Acad. Sci. Paris*, 215, 86.